LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of surface modification on the physical, mechanical, and thermal properties of bamboo-polypropylene composites

Photo by sxy_selia from unsplash

To fabricate homogeneous bamboo fiber reinforced thermoplastic composites, polypropylene (PP) fiber and 3-aminpropyltriethoxysilane (APTES) modified bamboo fibers were first formed into mats by non-woven air paving technology, and then the… Click to show full abstract

To fabricate homogeneous bamboo fiber reinforced thermoplastic composites, polypropylene (PP) fiber and 3-aminpropyltriethoxysilane (APTES) modified bamboo fibers were first formed into mats by non-woven air paving technology, and then the composites were created by hot-pressing the mats. The modification of BFs was characterized by XPS and FTIR analyses, and the results confirmed that APTES had been grafted onto the surfaces of BFs. The effects of concentrations of APTES on the mechanical, physical, morphological, and thermal properties of the bamboo-polypropylene composites were examined by tests of bending strength, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and water absorption. The analysis of physical and mechanical properties revealed improved mechanical properties and water resistance (3 wt% of APTES). SEM images were used to assess the influence of modification treatment on the properties of the composites. The results confirmed that the modification of APTES improved the interfacial adhesion between BFs and PP matrix. DSC results indicated the melting point of composites decreased with an increase in concentration of APTES up to 3 wt%, while the melting point of composites increased when the concentration of APTES was higher than 3 wt%.

Keywords: bamboo polypropylene; physical mechanical; polypropylene composites; properties bamboo; thermal properties; modification

Journal Title: Bioresources
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.