In order to avoid working in a constrained hazardous environment, manual spray painting operation is gradually being replaced by automated robotic systems in many manufacturing industries. Application of spray painting… Click to show full abstract
In order to avoid working in a constrained hazardous environment, manual spray painting operation is gradually being replaced by automated robotic systems in many manufacturing industries. Application of spray painting robots ensures defect-free painting of dissimilar components with higher repeatability, flexibility, productivity, reduced cycle time and minimum wastage of paint. Due to availability of a large number of viable options in the market, selection of a spray painting robot suitable for a given application poses a great problem. Thus, this paper proposes the integrated application of step-wise weight assessment ratio analysis (SWARA) and combined compromise solution (CoCoSo) methods to identify the most apposite spray painting robot for an automobile industry based on seven evaluation criteria (payload, mass, speed, repeatability, reach, cost and power consumption). The SWARA method identifies cost as the most significant criterion based on a set preference order, whereas, Fanuc P-350iA/45 is selected as the best spray painting robot by CoCoSo method. The derived ranking results are also contrasted with other popular multi-criteria decision making (MCDM) techniques (TOPSIS, VIKOR, COPRAS, PROMETHEE and MOORA) and subjective criteria weighting methods (AHP, PEPRECIA, BWM and FUCOM). High degrees of similarity in the ranking patterns between the adopted approach and other MCDM techniques prove its effectiveness in solving complex industrial robot selection problems. This integrated approach is proved to be quite robust being almost unaffected by the changing values of the corresponding tuning parameter in low-dimensional MCDM problems.
               
Click one of the above tabs to view related content.