LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A prediction model of mining subsidence in thick loose layer based on probability integral model

Photo by shubzweb3 from unsplash

The probability integral method is the most commonly used mining subsidence prediction model, but it is only applicable to ordinary geological mining conditions. When the loose layer in the geological… Click to show full abstract

The probability integral method is the most commonly used mining subsidence prediction model, but it is only applicable to ordinary geological mining conditions. When the loose layer in the geological mining conditions where the mining face is located is too thick, many inaccurate phenomena will occur when the movement deformation value is predicted by the probability integral method. The most obvious one is the problem that the predicted value converges too fast compared with the measured value in the edge of the sinking basin. In 2012, Wang and Deng proposed a modified model of probability integral method for the marginal errors in the model of probability integral method and verified the feasibility of the method through examples. In this paper, the method is applied to the prediction of surface movement under thick and loose layers after modified. Through practical application, it is found that due to the angle between the working face and the horizontal direction, the average mining depth in the strike direction is different from the average mining depth in the inclined direction, and the main influence radius of the two main sections are often. Therefore, based on this problem, this paper divides the main influence radius into trend and tendency and adjusts the parameters in the model to find the rules of the parameters. The original method uses a dynamic scale factor to adjust the predicted shape of the graph by adjusting the sinking coefficient. This study is aimed to set the scale factor to 0.5 and fix the value of the sinking factor, and propose to adjust the integral range and then adjust the shape of the graph to make it more in line with the actual measurement situation.

Keywords: method; probability integral; mining; model; prediction

Journal Title: Earth Sciences Research Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.