The availability of freshwater is increasingly becoming an international concern because of the increase in population and the diminishing forest area as a source of water, leading to a freshwater… Click to show full abstract
The availability of freshwater is increasingly becoming an international concern because of the increase in population and the diminishing forest area as a source of water, leading to a freshwater crisis. The coastal and swamp areas abound in water, but humans cannot consume it due to the quality. One effort that can be done in overcoming this problem is by treating existing raw water with solar distillation methods. However, the main obstacle faced in this method is the intensity of sunlight that is not stable throughout the day so that the productivity of distilled water is disrupted. Using the appropriate phase change material (PCM) is expected to make the distillation process smoother and increase the production of pure water. In this study, myristic acid was used as PCM in double slope solar distillation system. Through observation, it was obtained that the average water temperature in the basin equaled to 42.5 °C while the melting point of the myristic acid was 58 °C. This shows that the use of myristic acid as an energy storage through phase change process does not occur. Therefore, the use of myristic acid as PCM for increasing the productivity of solar distillation in these experiments is not effective because the melting point of PCM is higher than water temperature in the basin. Therefore, material with a phase change temperature below 42.5 °C is more appropriate to use in these conditions.
               
Click one of the above tabs to view related content.