LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets

Photo by robbie36 from unsplash

{001} facets dominant TiO2 nanosheets have attracted intensive attention in the photocatalytic field, due to their undercoordinated Ti5c centers, higher surface energy, and photocatalytic activity than those of any other… Click to show full abstract

{001} facets dominant TiO2 nanosheets have attracted intensive attention in the photocatalytic field, due to their undercoordinated Ti5c centers, higher surface energy, and photocatalytic activity than those of any other low-energy facet. However, a fluorine-rich (001) surface is controversial to the photocatalytic activity of TiO2 nanocrystals. We have removed the surface F atoms bonding with Ti by hydrogenation method successfully, and found that {001} facets dominant TiO2 nanosheets without the terminated F atoms showed dramatic enhancement in the photocatalytic activity. Moreover, the clean (001) surface was more in favor of the deposition of PdO than the fluorine-rich surface, and the amorphous structure from the hydrogenation is beneficial to the reduction of PdCl42− to Pd nanoparticles. The PdO attached on {001} facets and the amorphous structure promoted the separation of charge carriers, and Pd nanoparticles transferred plasmonic-induced electrons to the conduction band of hydrogenated TiO2 under simulated solar irradiation. Thus, a significantly enhanced photocatalytic activity of Pd–H–TiO2 is achieved on degrading organic environmental pollution, due to the synergy of palladium species and hydrogenation on {001} facets exposed TiO2.

Keywords: 001 facets; tio2 nanosheets; photocatalytic activity; facets dominant; dominant tio2

Journal Title: Journal of Materials Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.