LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A first-principles study of potassium insertion in crystalline vanadium oxide phases as possible potassium-ion battery cathode materials

Photo from wikipedia

Four different vanadium oxide phases [α-vanadium pentoxide (V2O5), β-V2O5, bronze-type vanadium dioxide [VO2(B)], and rutile-type VO2 [VO2(R)])] are investigated from first principles as potential electrode materials for potassium (K) ion… Click to show full abstract

Four different vanadium oxide phases [α-vanadium pentoxide (V2O5), β-V2O5, bronze-type vanadium dioxide [VO2(B)], and rutile-type VO2 [VO2(R)])] are investigated from first principles as potential electrode materials for potassium (K) ion batteries. Specifically, insertion energetics and diffusion barriers are computed. These phases are known as promising cathode materials for other types of metal ion batteries. Our results show that the metastable β-V2O5 provides the lowest (strongest) insertion energies for K and the lowest diffusion barriers compared with orthorhombic α-V2O5, VO2(B), and VO2(R). While three of these phases show energetically favorable potassiation and relatively small diffusion barriers, VO2(R) is predicted to be incapable of electrochemical K incorporation.

Keywords: vanadium oxide; ion; vanadium; first principles; vo2; oxide phases

Journal Title: MRS Communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.