LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors

Photo by efekurnaz from unsplash

Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is… Click to show full abstract

Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field E c of hafnia ferroelectrics are beneficial. The much higher E c of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.

Keywords: hafnium oxide; hafnia; ferroelectric random; field; random access; access memories

Journal Title: Mrs Bulletin
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.