Three-dimensional printing (3DP) is becoming a standard manufacturing practice for a variety of biomaterials and biomedical devices. This layer-by-layer methodology provides the ability to fabricate parts from computer-aided design files… Click to show full abstract
Three-dimensional printing (3DP) is becoming a standard manufacturing practice for a variety of biomaterials and biomedical devices. This layer-by-layer methodology provides the ability to fabricate parts from computer-aided design files without the need for part-specific tooling. Three-dimensional printed medical components have transformed the field of medicine through on-demand patient care with specialized treatment such as local, strategically timed drug delivery, and replacement of once-functioning body parts. Not only can 3DP technology provide individualized components, it also allows for advanced medical care, including surgical planning models to aid in training and provide temporary guides during surgical procedures for reinforced clinical success. Despite the advancement in 3DP technology, many challenges remain for forward progress, including sterilization concerns, reliability, and reproducibility. This article offers an overview of biomaterials and biomedical devices derived from metals, ceramics, polymers, and composites that can be three-dimensionally printed, as well as other techniques related to 3DP in medicine, including surgical planning, bioprinting, and drug delivery.
               
Click one of the above tabs to view related content.