LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of hydrophilic bamboo cellulose functionalization on electrospun polyacrylonitrile nanofiber-based humidity sensors

Photo from wikipedia

Quartz crystal microbalance-based humidity sensors with sensing layer of bamboo cellulose (BC)-overlaid polyacrylonitrile (PAN) nanofibers were fabricated using electrospinning and drop-casting processes. Scanning electron microscopy, water contact angle measurement, and… Click to show full abstract

Quartz crystal microbalance-based humidity sensors with sensing layer of bamboo cellulose (BC)-overlaid polyacrylonitrile (PAN) nanofibers were fabricated using electrospinning and drop-casting processes. Scanning electron microscopy, water contact angle measurement, and Fourier-transform infrared spectroscopy were employed to investigate the morphology, wettability, and chemical composition of the nanofibers, respectively. Impact of varying BC concentration on the sensing response toward relative humidity (RH) was evaluated, where higher BC concentration resulted in more responsive sensor behavior (higher-frequency shift) toward RH. This work highlights a simple method to enhance the humidity-sensing ability of electrospun nanofibers by overlaying them with hydrophilic materials. Graphical abstract

Keywords: humidity sensors; humidity; electrospun; based humidity; bamboo cellulose

Journal Title: MRS Communications
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.