LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Benchmark of Non-intrusive Parametric Audio Quality Estimation Models for Broadcasting Systems and Web-casting Applications

Photo from wikipedia

Due to the rising usage of various broadcasting systems and web-casting applications, a measurement of audio quality has become an essential task. This paper presents a benchmark of the parametric… Click to show full abstract

Due to the rising usage of various broadcasting systems and web-casting applications, a measurement of audio quality has become an essential task. This paper presents a benchmark of the parametric models for non-intrusive estimation of the audio quality perceived by the end user. The proposed solution is based on machine learning techniques for broadcasting systems and web-casting applications. The main goal of this study is to assess the performance of the non-intrusive parametric models as well as to evaluate a statistical significance of the performance differences between those models. The paper provides a comparison of several models based on the Support Vector Regression, Genetic Programming, Multigene Symbolic Regression, Neural Networks and Random Forest. The obtained results indicate that among the investigated models the most accurate, although not the fastest ones, are the model based on Random Forest (a broadcast scenario) and the SVR-based model (a web-cast scenario). These models represent promising candidates for non-intrusive parametric audio quality assessment in the context of broadcasting systems and web-casting applications.

Keywords: casting applications; audio quality; broadcasting systems; non intrusive; systems web; web casting

Journal Title: Advances in Electrical and Electronic Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.