LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acentralizers of Abelian groups of rank 2

Photo by tokeller from unsplash

Let $G$ be a group. The Acentralizer of an automorphism $\alpha$ of $G$, is the subgroup of fixed points of $\alpha$, i.e.,  $C_G(\alpha)= \{g\in G \mid \alpha(g)=g\}$. We show that… Click to show full abstract

Let $G$ be a group. The Acentralizer of an automorphism $\alpha$ of $G$, is the subgroup of fixed points of $\alpha$, i.e.,  $C_G(\alpha)= \{g\in G \mid \alpha(g)=g\}$. We show that if $G$ is a  finite  Abelian  $p$-group of rank $2$, where $p$ is an odd prime, then the number of Acentralizers of $G$ is exactly the number of subgroups of $G$. More precisely, we show that for each  subgroup $U$ of $G$, there exists an automorphism $\alpha$ of $G$ such that $C_G(\alpha)=U$. Also we find the Acentralizers of infinite two-generator Abelian groups.

Keywords: acentralizers abelian; alpha; abelian groups; groups rank

Journal Title: Hacettepe Journal of Mathematics and Statistics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.