LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

WEAKLY PRIME IDEALS ISSUED FROM AMALGAMATED ALGEBRA

Photo by nielsenramon from unsplash

Let $R$ be a commutative ring with identity. A proper ideal $P$ is said to be weakly prime ideal of $R$ if for every $0\neq ab\in P$ where $a,b\in R,$… Click to show full abstract

Let $R$ be a commutative ring with identity. A proper ideal $P$ is said to be weakly prime ideal of $R$ if for every $0\neq ab\in P$ where $a,b\in R,$ implies $a\in P$ or $b\in P$. The notion of weakly prime ideal was introduced by Anderson et al. in [Weakly prime ideals,  Houston J. Math., 2003] as a generalization of prime ideals. The purpose of this paper is to study the form of weakly prime ideals of amalgamation of $A$ with $B$ along $J$ with respect to $f$ (denoted by $A\bowtie^{f}J$), introduced and studied by D'Anna et al. in [Amalgamated algebras along an ideal, Commutative Algebra and Its Applications, 2009]. Our results provide new techniques for the construction of new original examples of weakly prime ideals. Furthermore, as an application of our results, we provide an upper bound for the weakly Krull dimension of amalgamation.

Keywords: ideal; weakly prime; amalgamated algebra; issued amalgamated; ideals issued; prime ideals

Journal Title: Hacettepe Journal of Mathematics and Statistics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.