In this paper, we present a new method to investigate data of multivariate heavy-tailed distributions. We show that for any given number $\alpha \in (0;2]$, each Gaussian copula is also… Click to show full abstract
In this paper, we present a new method to investigate data of multivariate heavy-tailed distributions. We show that for any given number $\alpha \in (0;2]$, each Gaussian copula is also the copula of an $\alpha$-stable random vector. Simultaneously, every random vector is $\alpha$-stable if its marginals are $\alpha$-stable and its copula is a Gaussian copula. The result is used to build up a formula representing density functions of $\alpha$-stable random vectors with Gaussian copula. Adopting a new tool, the paper points out that pairs of GPS signals recording latitude and longitude of a fixed point have two-dimensional stable distribution, and in the most of cases, vectors of daily returns in stock market data have multivariate stable distributions with Gaussian copulas.
               
Click one of the above tabs to view related content.