LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization and Tissue-specific Expression of bHLH Genes in Dimocarpus longan

Photo by chapeghi from unsplash

In plants, the basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles in many biological processes including growth, stress response, and secondary metabolite synthesis. To date, many bHLH genes have… Click to show full abstract

In plants, the basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles in many biological processes including growth, stress response, and secondary metabolite synthesis. To date, many bHLH genes have been identified and characterized in diverse plant species. However, little is known regarding the bHLH genes in Dimocarpus longan Lour. (D. longan). Based on RNA-seq data, we identified 42 putative bHLH genes from D. longan and determined their putative functions using the NCBI Conserved Domain Search Tool and Pfam databases. The physicochemical properties, phylogenetic relationships, conserved motifs, gene ontology (GO) annotations, protein-protein interactions, and tissue-specific expression patterns of these bHLH genes were systematically explored. In total, ten motifs were found in DlbHLH proteins using MEME, among which two were highly conserved. Phylogenetic tree analysis found that DlbHLH proteins can be divided into nine groups, with group 2 being the largest. GO annotation results showed that the DlHLH genes were involved in various molecular functions. RNA-seq and qRT-PCR results revealed important differences in the expression patterns of 17 of the DlbHLH genes. In particular, DlbHLH-9, DlbHLH-19, DlbHLH-25, DlbHLH-26, and DlbHLH-35 were found to show significantly different expression patterns in root and leaf tissues. The results of this study will further enrich our knowledge regarding bHLH transcription factor genes and lay a foundation for enhancing the production of active secondary metabolites by genetic engineering in D. longan.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********

Keywords: dimocarpus longan; bhlh; dlbhlh; expression; genes dimocarpus; bhlh genes

Journal Title: Notulae Botanicae Horti Agrobotanici Cluj-Napoca
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.