Non-biodegradable metals such as mercury accumulate in living organisms during life (bioaccumulation) and also within trophic webs (biomagnification) and may reach high concentrations in humans. The contamination of humans by… Click to show full abstract
Non-biodegradable metals such as mercury accumulate in living organisms during life (bioaccumulation) and also within trophic webs (biomagnification) and may reach high concentrations in humans. The contamination of humans by mercury in drinking water and food may be common, in particular in riverside communities that have a diet rich in fish. In vitro studies of human cell lines exposed to the cytotoxic and mutagenic effects of methylmercury have shown that prolactin has potential cytoprotective properties and may act as a co-mitogenic factor and inhibitor of apoptosis. The present in vivo study investigated the protective potential of prolactin against the toxic effects of methylmercury in the mammal Mus musculus. Histological and biochemical analyses, together with biomarker of genotoxicity, were used to verify the protective potential of prolactin in mice exposed to methylmercury. The reduction in kidney and liver tissue damage was not significant. However, results of biochemical and genotoxic analyses were excellent. After prolactin treatment, a significant reduction was observed in biochemical parameters and mutagenic effects of methylmercury. The study results therefore indicated that prolactin has protective effects against the toxicity of methylmercury and allowed us to suggest the continuation of research to propose prolactin in the future, as an alternative to prevent the damage caused by mercury, especially in populations that are more exposed.
               
Click one of the above tabs to view related content.