Rice (Oryza sativa L.) is one of the most important crops in the world, and it is considered the primary source of nutritional layout in developing countries in Asia. The… Click to show full abstract
Rice (Oryza sativa L.) is one of the most important crops in the world, and it is considered the primary source of nutritional layout in developing countries in Asia. The glutathione S-transferases (GSTs) superfamily confers to rice protection against biotic and abiotic stress, and herbicide resistance. However, the three-dimensional structure of a GST Tau class, is unsolved. The objectives of this work were to develop a reliable comparative model for the s-transferase glutathione class Tau 4 from rice, and simulate docking interactions, against herbicides bentazon and metsulfuron. Results showed that the predicted model is reliable and has structural quality. Ramachandran plot set 91.9% of the residues in the most favored regions. All complexes showed negative binding energies values; and metsulfuron docked to the glutathione tripeptide, and it represents a possible insilico evidence of glutathione conjugation with this herbicide.
               
Click one of the above tabs to view related content.