ABSTRACT The occurrence of negative correlations between grain yield (GY) and popping expansion (PE) in popcorn complicates the selection process. In an attempt to overcome this inconvenience, we proposed the… Click to show full abstract
ABSTRACT The occurrence of negative correlations between grain yield (GY) and popping expansion (PE) in popcorn complicates the selection process. In an attempt to overcome this inconvenience, we proposed the use of the importance characteristic volume per popcorn per hectare (PV). The objectives of this study were to develop the ninth cycle of the UENF-14 popcorn population, to estimate the direct and indirect effects of PV and to verify the genetic progress among all selective cycles. We obtained and evaluated 200 inbred progenies in randomised blocks arranged in replicates within sets, with nine sets consisting of 25 progenies and one set with all previous eight cycles with three replicates. The average height of the plants, prolificacy, 100-grain weight, grain yield, grain popping expansion and volume per popcorn per hectare were evaluated. Track analysis was performed to determine the direct and indirect effects, and the Mulamba and Mock selection index was calculated for the selection of the 40 superior progenies. There was genetic variability among progenies in all evaluated traits, with a cause-and-effect relationship between PV with GY and PE, allowing simultaneous gains with indirect selection. The selection of the best progenies was more effective when using arbitrarily assigned weights, which provided higher predicted gains for PV (20.73%). The means obtained in all cycles indicated increases, demonstrating the efficiency of using continuous recurrent selection in popcorn breeding programs.
               
Click one of the above tabs to view related content.