LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gene transfer utilizing pollen-tubes of Albuca nelsonii and Tulbaghia violacea

Photo by kellysikkema from unsplash

Developing a tissue culture-independent genetic transformation system would be an interesting technique for gene transfer in valuable medicinal and horticultural plants. Efficient gene delivery (Agrobacterium tumefaciens strain LBA 4404: harbouring… Click to show full abstract

Developing a tissue culture-independent genetic transformation system would be an interesting technique for gene transfer in valuable medicinal and horticultural plants. Efficient gene delivery (Agrobacterium tumefaciens strain LBA 4404: harbouring PBI121 plasmid) was achieved with Km-resistant pollen grains (pollen tube technique) and were found to be GUS-positive for Albuca nelsonii (31.3%) and Tulbaghia violacea (32.6%). The Km-resistance (95.6% for A. nelsonii and 86.7% for T. violacea) and GUS-positive (100% for A. nelsonii and 97.5% for T. violacea) putative transgenic seedlings in vitro were obtained with 200 mg L-1 Km. The in vitro plants were obtained from leaf explants of putative transgenic seedlings and were confirmed to be Km-resistant and GUSpositive (T. violacea, 73.7% and A. nelsonii, 80.5%). The plants were successfully acclimatized in the greenhouse. We describe a tissue culture-independent gene transfer technique with high efficiency clonal transgenic plant production for A. nelsonii and T. violacea. This can also be applied to biotechnological crop improvement of the same species and potentially to other plants.

Keywords: violacea; albuca nelsonii; gene transfer; nelsonii tulbaghia; gene

Journal Title: Crop Breeding and Applied Biotechnology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.