LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calcium-Sensing Receptor Arbitrates Hypoxia-Induced Proliferation of Pulmonary Artery Smooth Muscle Cells via the G Protein-PLC-IP3 Pathway.

Photo from wikipedia

Pulmonary arterial hypertension (PAH), also known as broilers ascites syndrome, is characterized by hypoxia, pulmonary artery pressure, and right heart failure. However, less information is available about the molecular mechanisms… Click to show full abstract

Pulmonary arterial hypertension (PAH), also known as broilers ascites syndrome, is characterized by hypoxia, pulmonary artery pressure, and right heart failure. However, less information is available about the molecular mechanisms of PAH. We evaluated the mediation of calcium-sensing receptor by inducing hypoxia for the possible proliferation of pulmonary artery smooth muscle cells via the G protein pathway. For this purpose, we used an in vitro trial of chicken cell culture and confirmed our results by using immunohistochemistry, immunofluorescence staining, quantitative real-time polymerase chain reaction assay, and Western blotting analysis. Our results showed that the mRNA and protein expression levels of calcium-sensing receptor (CaSR) were significantly upregulated in cells when co-incubated with CaCl2. However, the levels of mRNA and protein were obviously decreased when supplemented with blocking agents (NiCl2, 2-APB, and D609). Furthermore, the experimentally induced hypoxia also upregulated the expression of CaSR gene as compared to CaSR gene expression in control cells. Together, these results indicate that hypoxia plays an important role in the expression of CaSR gene in pulmonary artery smooth muscle cells and reveals new targets for the CaSR excited hypothesis to prevent and control PAH in chickens.

Keywords: pulmonary artery; artery smooth; artery; calcium sensing; smooth muscle; sensing receptor

Journal Title: Critical reviews in eukaryotic gene expression
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.