LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Employment of ARTP to Generate Phellinus baumii (Agaricomycetes) Strain with High Flavonoids Production and Validation by Liquid Fermentation.

Photo by martindorsch from unsplash

To obtain Phellinus baumii strain with high flavonoids yield, ARTP was employed to generate mutants of a Ph. baumii strain, which were screened for higher flavonoids content. After five rounds… Click to show full abstract

To obtain Phellinus baumii strain with high flavonoids yield, ARTP was employed to generate mutants of a Ph. baumii strain, which were screened for higher flavonoids content. After five rounds of screening, four mutants were identified to produce more flavonoids than the wild type strain under optimal conditions, of which A67 was the mutant with the highest flavonoids productive capacity. When cultured in shake flasks, the maximum intracellular total flavonoids production of A67 reached 0.56 g/L, 86.67% higher than the total flavonoids in CK. Antagonistic testing, RAPD, and HPLC analysis suggested that ARTP caused changes of the genetic material and metabolites in Ph. baumii. In addition, the superiority of A67 to CK was proved by liquid fermentation using unstructured kinetic models, which was performed in a 50-L fermentor. The maximum intracellular total flavonoids production and dry mycelium weight of A67 reached 0.64 g/L and 15.24 g/L, which was an increase of 88.24% and 18.23% compared with CK, respectively. This work could provide an efficient and practical strategy to obtain high flavonoids production strains and the superiority of A67 could also provide a reference to further increase flavonoids production of Ph. baumii in large-scale production mode by submerged fermentation process.

Keywords: phellinus baumii; production; strain high; fermentation; high flavonoids; flavonoids production

Journal Title: International journal of medicinal mushrooms
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.