SUMMARY. The resistance to serum complement-mediated killing is a vital virulence property of microbial pathogens. Complement factor H (FH) is a key negative regulator of the complement alternative pathway (AP)… Click to show full abstract
SUMMARY. The resistance to serum complement-mediated killing is a vital virulence property of microbial pathogens. Complement factor H (FH) is a key negative regulator of the complement alternative pathway (AP) that prevents formation and accelerates the decay of AP C3 convertase and acts as a cofactor in the inactivation of C3b. Pathogens can recruit host FH through their surface proteins to escape the clearance of the complement system. Riemerella anatipestifer could also evade the complement system attack to achieve host infection, but the mechanism is still unclear. In this study, the R. anatipestifer proteins that could interact with FH in host serum were screened and analyzed, and the functions were determined. Affinity chromatography with a Ni–nitrilotriacetic acid Sefinose column and mass spectrometry identified three outer membrane proteins (Omp) of R. anatipestifer, Omp54, Omp53, and Omp24, as potential FH-binding proteins. We then successfully conducted the prokaryotic expression and polyclonal antibody preparation of three candidate proteins. Indirect immunofluorescence assay showed that three candidate proteins were all present in R. anatipestifer. The affinity blotting assay, anti-serum–inhibiting assay, and serum bactericidal assay presented evidence that Omp24 could bind FH. Moreover, FH bound to Omp24 was associated with resistance to the alternative pathway and functional for R. anatipestifer survival in the normal duck serum. These results suggested that R. anatipestifer Omp24 was a FH-binding protein and the interaction with FH blocked the alternative pathway. Recruitment of complement regulatory proteins may facilitate better R. anatipestifer resistance to this vital line of host defense.
               
Click one of the above tabs to view related content.