LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blocking Endogenous H2S Signaling Attenuated Radiation-Induced Long-Term Metastasis of Residual HepG2 Cells through Inhibition of EMT

Photo by j_blueberry from unsplash

Recurrence and metastasis of hepatocellular carcinoma (HCC) after radiotherapy are frequently observed in clinical practice. To date, the involved mechanism, endogenous hydrogen sulfide (H2S), has not been well understood and… Click to show full abstract

Recurrence and metastasis of hepatocellular carcinoma (HCC) after radiotherapy are frequently observed in clinical practice. To date, the involved mechanism, endogenous hydrogen sulfide (H2S), has not been well understood and warrants investigation. Here we demonstrated that both single-dose and fractionated irradiation enhanced metastasis of HCC cells both in vitro and in vivo at 20–60 days postirradiation. In particular, a gain in epithelial-mesenchymal transition (EMT) and mesenchymal features was observed. Further experiments revealed that endogenous H2S signaling was constitutively activated after irradiation. Knockdown of cystathionine-γ-lyase (CSE) or cystathionine-β-synthase (CBS), two main H2S-producing proteins, significantly diminished the increased expressions of EMT-related proteins induced by radiation through the p38MAPK pathway, leading to impaired invasion and metastasis of the residual HepG2 cells and their xenograft tumors. Moreover, blocking of the H2S pathway increased the radiosensitivity of the HepG2 xenograft tumor. Collectively, our results strongly suggest that endogenous H2S/CSE contributes to the long-term cell invasion and tumor metastasis induced by fractionated exposures and therefore, could become an attractive therapeutic target of HCC to eliminate radiotherapy-induced adverse effects.

Keywords: metastasis; h2s signaling; endogenous h2s; hepg2; metastasis residual; h2s

Journal Title: Radiation Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.