LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanisms Underlying Increased TIMP2 and IGFBP7 Urinary Excretion in Experimental AKI.

Photo by claybanks from unsplash

BACKGROUND Recent clinical data support the utility/superiority of a new AKI biomarker ("NephroCheck"), the arithmetic product of urinary TIMP × IGFBP7 concentrations. However, the pathophysiologic basis for its utility remains… Click to show full abstract

BACKGROUND Recent clinical data support the utility/superiority of a new AKI biomarker ("NephroCheck"), the arithmetic product of urinary TIMP × IGFBP7 concentrations. However, the pathophysiologic basis for its utility remains ill defined. METHODS To clarify this issue, CD-1 mice were subjected to either nephrotoxic (glycerol, maleate) or ischemic AKI. Urinary TIMP2/IGFBP7 concentrations were determined at 4 and 18 hours postinjury and compared with urinary albumin levels. Gene transcription was assessed by measuring renal cortical and/or medullary TIMP2/IGFBP7 mRNAs (4 and 18 hours after AKI induction). For comparison, the mRNAs of three renal "stress" biomarkers (NGAL, heme oxygenase 1, and p21) were assessed. Renal cortical TIMP2/IGFBP7 protein was gauged by ELISA. Proximal tubule-specific TIMP2/IGFBP7 was assessed by immunohistochemistry. RESULTS Each AKI model induced prompt (4 hours) and marked urinary TIMP2/IGFBP7 increases without an increase in renal cortical concentrations. Furthermore, TIMP2/IGFBP7 mRNAs remained at normal levels. Endotoxemia also failed to increase TIMP2/IGFBP7 mRNAs. In contrast, each AKI model provoked massive NGAL, HO-1, and p21 mRNA increases, confirming that a renal "stress response" had occurred. Urinary albumin rose up to 100-fold and strongly correlated (r=0.87-0.91) with urinary TIMP2/IGFBP7 concentrations. Immunohistochemistry showed progressive TIMP2/IGFBP7 losses from injured proximal tubule cells. Competitive inhibition of endocytic protein reabsorption in normal mice tripled urinary TIMP2/IGFBP7 levels, confirming this pathway's role in determining urinary excretion. CONCLUSIONS AKI-induced urinary TIMP2/IGFBP7 elevations are not due to stress-induced gene transcription. Rather, increased filtration, decreased tubule reabsorption, and proximal tubule cell TIMP2/IGFBP7 urinary leakage seem to be the most likely mechanisms.

Keywords: timp2 igfbp7; igfbp7; aki; urinary timp2; urinary excretion

Journal Title: Journal of the American Society of Nephrology : JASN
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.