LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-Cell RNA Sequencing Reveals mRNA Splice Isoform Switching during Kidney Development.

Photo from wikipedia

BACKGROUND During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring… Click to show full abstract

BACKGROUND During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring gene expression from thousands of individual cells identified the different cell types in the developing kidney. However, that analysis did not include the additional layer of heterogeneity that alternative mRNA splicing creates. METHODS Full transcript length single-cell RNA sequencing characterized the transcriptomes of 544 individual cells from mouse embryonic kidneys. RESULTS Gene expression levels measured with full transcript length single-cell RNA sequencing identified each cell type. Further analysis comprehensively characterized splice isoform switching during the transition between mesenchymal and epithelial cellular states, which is a key transitional process in kidney development. The study also identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2. CONCLUSIONS Discovery of the sets of genes that are alternatively spliced as the fetal kidney mesenchyme differentiates into tubular epithelium will improve our understanding of the molecular mechanisms that drive kidney development.

Keywords: cell rna; cell; single cell; rna sequencing; kidney; kidney development

Journal Title: Journal of the American Society of Nephrology : JASN
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.