exploration and exploitation of mineral resources to sustain their economic growth. Usually, the traditional mineral exploration techniques require enormous finances, prolonged time, and tremendous manpower, particularly in areas that are… Click to show full abstract
exploration and exploitation of mineral resources to sustain their economic growth. Usually, the traditional mineral exploration techniques require enormous finances, prolonged time, and tremendous manpower, particularly in areas that are not easily reachable (Maduaka, 2014). Furthermore, mineral exploration required state-of-the-art techniques and expertise along with geological, geochemical, and geophysical datasets, which may not be easily available or may be lacking where access is problematic (Kaiser et al., 2002; Bemis et al., 2014). Modern remote sensing technology has proved to be one of the highly efficient and robust techniques used for mineral exploration. The use of remote sensing satellite images for geological mapping and mineral exploration usually involves studying the physicochemical properties of rocks and weathering soils, such as mineralogy, landforms, geochemical signatures, and the spatiall distribution of lineaments (Bhattacharya et al., 2012). A fundamental principle of mineral exploration is that it is quite possible that undiscovered deposits will be located in the close vicinity of discovered ones. For example, if mining is taking place in a particulat area, then similar minerals will be more likely found nearer to the discovered deposit, and as the distance increases, the likelihood of new discoveries will decrease. In that situation, before drilling exploratory boreholes at new locations, remote sensing can be used effectively to identify regions with higher chances of mineralization, mainly through multior hyperspectral remote sensing images (Gholami, Moradzadeh, and Yousef, 2012; Ciampalini et al., 2013). The use of reflectance spectroscopic information derived from remote sensing data allows effective localization of mineral exploration and reduces the cost and time spent on fieldwork for geological, geophysical, and geochemical studies (Short and Lowman Jr, 1973; Tedesco, 2012; Marjoribanks, 2010). Several remote sensing studies for mineral exploration and lithological mapping have been done in arid and semi-arid regions. In areas with good geological exposure, satellites in orbit are capable of acquiring spectral reflectance data directly from rock or/and soils (Sabins, 1999; Di Tommaso and Rubinstein, 2007; Zhang et al., 2007; Pour and Hashim, 2012; Mahboob, Iqbal, and Atif, 2015). Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data from Landsat
               
Click one of the above tabs to view related content.