LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of high hydrostatic pressure on the secondary structure of microbial transglutaminase

Photo from wikipedia

Enzyme activity and corresponding secondary structure, measured by circular dichroism was analysed before und after treatment of microbial transglutaminase at different temperatures (40, 80°C) and pressures (0.1, 200, 400, 600… Click to show full abstract

Enzyme activity and corresponding secondary structure, measured by circular dichroism was analysed before und after treatment of microbial transglutaminase at different temperatures (40, 80°C) and pressures (0.1, 200, 400, 600 MPa). Irreversible enzyme inactivation was achieved at 80°C after 2 minutes at atmospheric pressure. Enzyme inactivation at 0.1, 200, 400, 600 MPa and 40°C followed first order kinetics. Increasing pressure reduced MTG activity, nevertheless the enzyme showed a residual activity of 50% after 12 min at 600 MPa. The analysis of the native enzyme exhibited well-defined proportions between α-helix, β-strand, β-turn and unordered structures. In contrast to heating, high-pressure treatment only at high levels induced significant decrease in the α-helix content, whereas β-strand substructures remained unaltered in both cases. Based on the known crystal structure of MTG it can be concluded that the active centre of the enzyme itself, which is located in an expanded β-strand domain, is relatively stable and pressure-induced inactivation is caused by a degradation of α-helix elements with corresponding influence on the tertiary structure.

Keywords: secondary structure; structure; 600 mpa; pressure; microbial transglutaminase

Journal Title: Czech Journal of Food Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.