LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of soil phosphorus and phosphatase activity under long-term no-tillage and maize residue management

Photo from wikipedia

The migration and transformation of soil phosphorus (P) are essential for agricultural productivity and environmental security but have not been thoroughly elucidated to date. A 10-year field study was conducted… Click to show full abstract

The migration and transformation of soil phosphorus (P) are essential for agricultural productivity and environmental security but have not been thoroughly elucidated to date. A 10-year field study was conducted to explore the effects of conventional tillage (CT) and no-tillage with maize residue management (NT-0, NT-33%, NT-67% and NT-100%) on P contents and phosphatase activities in soil layers (0–5, 5–10, 10–20 and 20–40 cm). The results showed that soil available P content and phosphatase activities were higher in no-tillage with maize residue than CT. Soil moisture and pH were significantly positively correlated with soil available P. Higher organic P contents and lower inorganic P contents in the 0–5 cm soil layer were found in the treatment NT-67% compared with other treatments. According to the structure equation model, the source of available P was inorganic P in NT-33%, while organic P in NT-67%. This study demonstrated that the variation of dominant mechanisms involved in soil P migration and transformation were dependent on residue input amounts, and NT-67% might play an important role in the maintenance and transformation of soil organic P.

Keywords: tillage maize; soil; soil phosphorus; maize residue; residue management

Journal Title: Plant, Soil and Environment
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.