LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DYNAMIC COMPRESSIVE PROPERTIES OF ALUMINIUM-MATRIX COMPOSITES REINFORCED WITH SiC PARTICLES

Photo from wikipedia

The aluminium-matrix composites (AMCs) consisted of (5, 10 and 15) x/% SiC particles (SiCp) in an aluminium alloy 7055 matrix. Specimens were taken from hot-press sintering. High-strain-rate tests were performed… Click to show full abstract

The aluminium-matrix composites (AMCs) consisted of (5, 10 and 15) x/% SiC particles (SiCp) in an aluminium alloy 7055 matrix. Specimens were taken from hot-press sintering. High-strain-rate tests were performed using the split-Hopkinson pressure bar (SHPB) method. The microstructures were observed with a scanning electron microscope (SEM) to understand the damage mechanisms of the SiCp/7055 Al composites at high strain rate. The SHPB test results show that the SiCp-reinforced composites are more sensitive to strain rate than the unreinforced material. The strain-rate sensitivity of the flow stress of these composites increases substantially with the increase of the strain rate. The flow stress of SiCp/7055Al composites with 10 x/% and 15 x/% SiCp at 3000 s–1 first increases and then decreases with the increase of the plastic strains, which was caused by the heat generated during adiabatic compression. Microstructure-characterization results show that SiCp cracking and SiCp/7055Al interface debonding are the main damage mechanisms of the composites. The SiCp volume fraction and strain rate affect the damage of composites during the dynamic compressive deformation of the SiCp /7055Al composites.

Keywords: strain; aluminium matrix; strain rate; matrix composites

Journal Title: Materiali in tehnologije
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.