LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Modifications of the Biodegradable Magnesium Based Implants with Self-Assembled Monolayers Formed by T-BAG Method.

Photo from wikipedia

In this paper, magnesium based materials (Mg and Mg-alloy (AZ91D)) were surface modified using various organic acids (carboxylic and phosphonic), in order to improve corrosion resistance and enhance theirs biocompatibility.… Click to show full abstract

In this paper, magnesium based materials (Mg and Mg-alloy (AZ91D)) were surface modified using various organic acids (carboxylic and phosphonic), in order to improve corrosion resistance and enhance theirs biocompatibility. Formations of surface layer were performed by tethering by aggregation and growth (T-BAG) method. Organization and bond mode of these layers were examined by Fourier transform infrared spectroscopy (FTIR). Additionally, semiempirical quantum molecular modeling calculation methods were used for getting insight into their structural and electronic properties, as also as corrosion resistance in the physiological solution (Hanks' solution). Corrosion resistance of modified materials were investigated by electrochemical impedance spectroscopy (EIS) in the physiological solution (Hanks' solution) and obtained results reveal a beneficial effect of the modification by forming organic acids self-assembled monolayer (SAM) on the corrosion properties of magnesium based materials, especially layers of octadecylphosphonic acid. The maximum corrosion inhibition efficiency of 87% for magnesium and of 93% for Mg-alloy (AZ91D) are achieved by the formation of octadecylphosphonic acid (ODPA) SAM.

Keywords: surface; self assembled; magnesium; spectroscopy; bag method; magnesium based

Journal Title: Acta chimica Slovenica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.