LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Solid-State PVC-Membrane Potentiometric Dopamine-Selective Sensor Based on Molecular Imprinted Polymer.

Photo from wikipedia

A novel solid-state polyvinylchloride (PVC) membrane potentiometric dopamine-selective microsensor was constructed based upon dopamine-imprinted polymer used as the ionophore in the membrane structure. The optimum membrane composition was determined as… Click to show full abstract

A novel solid-state polyvinylchloride (PVC) membrane potentiometric dopamine-selective microsensor was constructed based upon dopamine-imprinted polymer used as the ionophore in the membrane structure. The optimum membrane composition was determined as 4% (w/w) MIP, 69% (w/w) bis(2-ethylhexyl) sebacate (DOS), 26% (w/w) PVC, and 1% (w/w) potassiumtetrakis(4-chlorophenyl) borate (KTpClPB). The detection limit of the microsensor was determined to be 3.71×10-7 mol.L-1. The microsensor exhibited a super-Nernstian response for dopamine over the concentration range of 10-6-10-1 mol.L-1, with a short response time (<15 s) and a slope of 60.3±1.3 mV per decade (R2: 0.9998) over seven weeks. The microsensor was effectively performed in a pH range of 4.0-8.0 and a temperature range of 5-30 °C. The microsensor has been successfully demonstrated for the rapid, accurate, selective and reproducible determination of dopamine in pharmaceutical formulations with the recovery of 104.3-104.8%. The obtained results were in good harmony with the UV-Vis results at a confidence level of 95%.

Keywords: pvc; dopamine; solid state; pvc membrane; novel solid

Journal Title: Acta chimica Slovenica
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.