The estimation of epicentral distance is a critical step in earthquake early warning systems (EEWSs) that is necessary to characterize the level of expected ground shaking. In this study, two… Click to show full abstract
The estimation of epicentral distance is a critical step in earthquake early warning systems (EEWSs) that is necessary to characterize the level of expected ground shaking. In this study, two rapid methodologies, that is, B‐Δ and C‐Δ, are evaluated to estimate the epicentral distance for use in the EEWSs around the Tehran region. Traditionally, the B and C coefficients are computed using acceleration records, however, in this study, we utilize both acceleration and velocity waveforms for obtaining a suitable B‐Δ and C‐Δ relationships for the Tehran region. In comparison with observations from Japan, our measurements fall within the range of scatter. However, our results show a lower trend, which can strongly depend on the few numbers of events and range of magnitude (small‐to‐moderate) of earthquakes used in the current research. To improve our result, we include some large earthquakes from Iran, Italy, and Japan with magnitude larger than 5.9. Although the optimal trend is finally obtained by fitting a line to the distance‐averaged points, we conclude that the same trend and relationship as Japan can be used in Tehran early warning system. We also found that B and C parameters are strongly compatible to each other. As time windows of 3.0 and 0.5 s after the P onset are chosen respectively to compute the B and C values, so by selecting the C parameter as a proxy of B parameter to estimate the epicentral distance, we may save significant time in order of about 2.5 s in any earthquake early warning applications.
               
Click one of the above tabs to view related content.