Correct identification and modeling of anthropogenic sources of ground motion are of considerable importance for many studies, including detection of small earthquakes and imaging seismic properties below the surface. To… Click to show full abstract
Correct identification and modeling of anthropogenic sources of ground motion are of considerable importance for many studies, including detection of small earthquakes and imaging seismic properties below the surface. To understand signals generated by common vehicle traffic, we use seismic data recorded by closely spaced geophones normal to roads at two sites on San Jacinto fault zone. To quantify the spatiotemporal and frequency variations of the recorded ground motions, we develop a simple analytical solution accounting for propagation and attenuation of surface waves. The model reproduces well-observed bell-shaped spectrograms of car signals recorded by geophones close to roads, and it can be used to estimate frequency-dependent Q-values of the subsurface materials. The data analysis indicates Q-values of 3–40, for frequencies up to 150 Hz for road-receiver paths at the two examined sites. The derived Q-values are consistent with attenuation factors of surface waves previously obtained with other methods. The analytical results and analysis procedure provide a highly efficient method for deriving Q-values of shallow subsurface materials.
               
Click one of the above tabs to view related content.