LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm.

Photo from wikipedia

AIM To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby… Click to show full abstract

AIM To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. METHODS The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID) model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. RESULTS The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. CONCLUSION The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund.

Keywords: senile cataract; cataract patients; related group; cataract; diagnosis related

Journal Title: International journal of ophthalmology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.