This paper reflects the problem of wideband spectrum recovery. The demand for spectrum usage is increasing exponentially as the wireless technologies rules the world. To meet these needs, Cognitive Radio… Click to show full abstract
This paper reflects the problem of wideband spectrum recovery. The demand for spectrum usage is increasing exponentially as the wireless technologies rules the world. To meet these needs, Cognitive Radio is one of the emerging technologies, which intelligently allots the spectrum to the secondary users. Since the spectrum is wideband, the capability of spectrum sensing is improved by introducing sub-nyquist sampling under compressive sensing framework. In this paper, a sub-nyquist sampling technique of Modulated Wideband Converter (MWC) is used as it possesses m-parallel channels providing fast sensing and robust structure. A circulant matrix method is used to improve the hardware complexity of MWC. Also at the reconstruction of MWC, a fusion based recovery algorithm is proposed which became an added benefit for perfect recovery of the support. The results are compared with conventional MWC in terms of support recovery, mean square error and SNR gain. Simulations proved that the proposed algorithm performs superior at low as well as high SNR with increased gain.
               
Click one of the above tabs to view related content.