The main purpose of this research work is to apply machine learning and image processing techniques for plant classification efficiently. In the plant classification system, the conventional method is time-consuming… Click to show full abstract
The main purpose of this research work is to apply machine learning and image processing techniques for plant classification efficiently. In the plant classification system, the conventional method is time-consuming and needs to apply expensive analytical instruments. The automated plant classification system helps to predict plant classes easily. The most challenging part of the automated plant classification research is to extract unique features of leaves. This paper proposes a plant classification model using an optimal feature set with combined features. The proposed model is used to extract features from leaf images and applied to image classification algorithms. After the evaluation process, it is found that GIST, Local Binary Pattern and Pyramid Histogram Oriented Gradient have better results than others in this particular application. Combined these three features extraction techniques and selected the optimal feature set through Neighbourhood Component Analysis. The optimal feature set helps classify plants with maximum accuracy in minimal time. Here performed an extensive experimental comparison of the proposed optimal feature set and other feature extraction methods using different classifiers and tested on different data sets (Swedish Leaves, Flavia, D-Leaf). The results confirm that this optimal feature set with NCA using ANN classifier leads to better classification achieved 98.99% accuracy in 353.39 seconds.
               
Click one of the above tabs to view related content.