LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonparametric pattern recognition algorithm for testing a hypothesis of the independence of random variables

Photo by jjying from unsplash

A new method for testing a hypothesis of the independence of multidimensional random variables is proposed. The technique under consideration is based on the use of a nonparametric pattern recognition… Click to show full abstract

A new method for testing a hypothesis of the independence of multidimensional random variables is proposed. The technique under consideration is based on the use of a nonparametric pattern recognition algorithm that meets a maximum likelihood criterion. In contrast to the traditional formulation of the pattern recognition problem, there is no a priori training sample. The initial information is represented by statistical data, which are made up of the values of a multivariate random variable. The distribution laws of random variables in the classes are estimated according to the initial statistical data for the conditions of their dependence and independence. When selecting optimal bandwidths for nonparametric kernel-type probability density estimates, the minimum standard deviation is used as a criterion. Estimates of the probability of pattern recognition error in the classes are calculated. Based on the minimum value of the estimates of the probabilities of pattern recognition errors, a decision is made on the independence or dependence of the random variables. The technique developed is used in the spectral analysis of remote sensing data.

Keywords: pattern recognition; testing hypothesis; random variables; recognition; independence

Journal Title: Computer Optics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.