LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of MCPIP1 protein in lipid metabolism, liver homeostasis and non-alcoholic fatty liver disease

Photo by nate_dumlao from unsplash

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of lipids in hepatocytes. Among NAFLD patients, in 25% of them this disease progress to nonalcoholic steatohepatitis, which is characterized… Click to show full abstract

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of lipids in hepatocytes. Among NAFLD patients, in 25% of them this disease progress to nonalcoholic steatohepatitis, which is characterized additionally by the development of inflammation and fibrosis of liver. Currently, it is estimated that 24% of the world’s population suffers from NAFLD. MCPIP1 protein is an RNase described as a negative regulator of inflammation. Also, MCPIP1 plays a role in lipid metabolism because it inhibits the process of adipogenesis and mice with a deletion of Zc3h12a gene are characterized by dyslipidemia and reduced body fat content. In the case of ischemia-reperfusion injury in liver, MCPIP1 is protective against the inflammation and damage of this organ. Lipid accumulation by hepatocytes is associated with a decrease of Mcpip1 level. In addition, MCPIP1 may influence the PPARγ-mediated lipogenesis process. Presence of Mcpip1 in both myeloid leukocytes and liver epithelial cells is crucial for the maintenance of liver homeostasis.

Keywords: mcpip1; alcoholic fatty; liver; non alcoholic; fatty liver; liver disease

Journal Title: Postepy biochemii
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.