Image fusion and subsequent scene analysis are important for studying Earth surface conditions from remotely sensed imagery. The fusion of the same scene using satellite data taken with different sensors… Click to show full abstract
Image fusion and subsequent scene analysis are important for studying Earth surface conditions from remotely sensed imagery. The fusion of the same scene using satellite data taken with different sensors or acquisition times is known as multi-sensor or multi-temporal fusion, respectively. The purpose of this study is to investigate the effects of misalignments the multi-sensor, multi-temporal fusion process when a pan-sharpened scene is produced from low spatial resolution multispectral (MS) images and a high spatial resolution panchromatic (PAN) image. It is found that the component substitution (CS) fusion method provides better performance than the multi-resolution analysis (MRA) scheme. Quantitative analysis shows that the CS-based method gives a better result in terms of spatial quality (sharpness), whereas the MRA-based method yields better spectral quality, i.e., better color fidelity to the original MS images .
               
Click one of the above tabs to view related content.