LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Quality Wavelets Features Extraction for Handwritten Arabic Numerals Recognition

Photo from wikipedia

Arabic handwritten digit recognition is the science of recognition and classification of handwritten Arabic digits. It has been a subject of research for many years with rich literature available on… Click to show full abstract

Arabic handwritten digit recognition is the science of recognition and classification of handwritten Arabic digits. It has been a subject of research for many years with rich literature available on the subject.  Handwritten digits written by different people are not of the same size, thickness, style, position or orientation. Hence, many different challenges have to overcome for resolving the problem of handwritten digit recognition.  The variation in the digits is due to the writing styles of different people which can differ significantly.  Automatic handwritten digit recognition has wide application such as automatic processing of bank cheques, postal addresses, and tax forms. A typical handwritten digit recognition application consists of three main stages namely features extraction, features selection, and classification. One of the most important problems is feature extraction. In this paper, a novel feature extraction approach for off-line handwritten digit recognition is presented. Wavelets-based analysis of image data is carried out for feature extraction, and then classification is performed using various classifiers. To further reduce the size of training data-set, high entropy subbands are selected. To increase the recognition rate, individual subbands providing high classification accuracies are selected from the over-complete tree. The features extracted are also normalized to standardize the range of independent variables before providing them to the classifier. Classification is carried out using k-NN and SVMs. The results show that the quality of extracted features is high as almost equivalently high classification accuracies are acquired for both classifiers, i.e. k-NNs and SVMs.

Keywords: digit recognition; handwritten digit; classification; extraction; recognition

Journal Title: International Journal on Advanced Science, Engineering and Information Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.