During DNA double strand breaks (DSBs) repair, coordinated activation of phosphatidylinositol 3-kinase (PI3K)-like kinases can activate p53 signaling pathway. Recent findings have identified novel interplays among these kinases demonstrating amplified… Click to show full abstract
During DNA double strand breaks (DSBs) repair, coordinated activation of phosphatidylinositol 3-kinase (PI3K)-like kinases can activate p53 signaling pathway. Recent findings have identified novel interplays among these kinases demonstrating amplified first p53 pulses under DNA-PK inhibition. However, no theoretical model has been developed to characterize such dynamics. In current work, we modeled the prolonged p53 pulses with DNA-PK inhibitor. We could identify a dose-dependent increase in the first pulse amplitude and width. Meanwhile, weakened DNA-PK mediated ATM inhibition was insufficient to reproduce such dynamic behavior. Moreover, the information flow was shifted predominantly to the first pulse under DNA-PK inhibition. Furthermore, the amplified p53 responses were relatively robust. Taken together, our model can faithfully replicate amplified p53 responses under DNA-PK inhibition and provide insights into cell fate decision by manipulating p53 dynamics.
               
Click one of the above tabs to view related content.