LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vivo autophagy and biogenesis of autophagosomes within male haploid cells during spermiogenesis

Photo by fotosushi from unsplash

Autophagy is a unique catabolic pathway that is linked to several physiological processes. However, its role in the process of spermiogenesis is largely unknown. The aim of the current study… Click to show full abstract

Autophagy is a unique catabolic pathway that is linked to several physiological processes. However, its role in the process of spermiogenesis is largely unknown. The aim of the current study was to determine the in vivo role of autophagy and the origin of autophagosome membrane biogenesis within male haploid cells. Our immunohistochemistry results demonstrated that LC3 and ATG7 localization were increased dramatically in round to elongated spermatids (haploid cells) towards the lumen of seminiferous tubules, however, poorly expressed in the early stages of germ cells near the basal membrane. Moreover, transmission electron microscopy revealed that the numbers of lysosomes and autophagosomes increased in the elongated spermatids as spermiogenesis progressed. However, no evidence was found for the presence of autophagosomes in the Sertoli cells, spermatogonia or early primary spermatocytes (diploid cells). Furthermore, TEM showed that many endoplasmic reticula were transformed into a “chrysanthemum flower center,” from which a double-layered isolation membrane appeared to develop into an autophagosome. This study provides novel evidence about the formation of autophagosomes through the chrysanthemum flower center from the endoplasmic reticulum, and suggests that autophagy may have an important role in the removal of extra cytoplasm within male haploid cells during spermiogenesis.

Keywords: spermiogenesis; biogenesis; within male; haploid cells; cells spermiogenesis; male haploid

Journal Title: Oncotarget
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.