LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crosstalk in competing endogenous RNA network reveals the complex molecular mechanism underlying lung cancer

Photo by art_almighty from unsplash

We investigated the transcriptional mechanism underlying lung cancer development. RNA sequencing analysis was performed on blood samples from lung cancer cases and healthy controls. Differentially expressed microRNAs (miRNAs), circular RNAs… Click to show full abstract

We investigated the transcriptional mechanism underlying lung cancer development. RNA sequencing analysis was performed on blood samples from lung cancer cases and healthy controls. Differentially expressed microRNAs (miRNAs), circular RNAs (circRNAs), mRNAs (genes), and long non-coding RNAs (lncRNA) were identified, followed by pathway enrichment analysis. Based on miRNA target interactions, a competing endogenous network was established and significant nodes were screened. Differentially expressed transcriptional factors were retrieved from the TRRUST database and the transcriptional factor regulatory network was constructed. The expression of 59 miRNAs, 18,306 genes,232 lncRNAs, and 292 circRNAs were greatly altered in patients with lung cancer. miRNAs were closely associated with cancer-related pathways, such as pathways in cancer, colorectal cancer, and transcriptional misregulation in cancer. Two novel pathways, olfactory transduction and neuroactive ligand-receptor interactions, were significantly enriched by differentially expressed genes. The competing endogenous RNA network revealed 5 hub miRNAs. Hsa-miR-582-3p and hsa-miR-582-5p were greatly enriched in the Wnt signaling pathway. Hsa-miR-665 was closely related with the MAPK signaling pathway. Hsa-miR-582-3p and hsa-miR-582-5p were also present in the TF regulatory network. Transcriptional factors of WT1 (wilms tumor 1) and ETV1 (ETS variant 1) were regulated by hsa-miR-657 and hsa-miR-582-5p, respectively, and controlled androgen receptor gene expression. miR-582-5p, miRNA-582-3p, and miR-657 may play critical regulatory roles in lung tumor development. Our work may explore new mechanism of lung cancer and aid the development of novel therapy.

Keywords: network; hsa mir; mir 582; lung cancer; cancer

Journal Title: Oncotarget
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.