LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lewis y antigen promotes p27 degradation by regulating ubiquitin-proteasome activity

Photo from wikipedia

As a tumor-associated carbohydrate antigen, elevated expression of Lewis y promotes the malignant behaviors of tumor cells. Although our preliminary study showed that the increased expression of Lewis y antigen… Click to show full abstract

As a tumor-associated carbohydrate antigen, elevated expression of Lewis y promotes the malignant behaviors of tumor cells. Although our preliminary study showed that the increased expression of Lewis y antigen decreased the expression of cell cycle inhibitor protein p27, the relevant mechanism remains unclear. Autophagy and the ubiquitin-proteasome system are two main ways of intracellular protein degradation, whose abnormal activities are closely associated with progression of malignant tumors. In our present study, we constructed two stable transfected cell lines with high expression of Lewis y antigen, named CAOV3-FUT1 and SKOV3-FUT1. We showed that the proportion of cells at S phase was significantly increased after FUT1 transfection, whereas p27 protein was obviously decreased. The autophagy activity, the levels of ubiquitination, and chymotrypsin-like protease activity were increased remarkably in the transfected cells. Interestingly, Lewis y antigen promoted the degradation of p27 by increasing ubiquitin-proteasome activity. In the vivo studies, Lewis y antigen improved the tumorigenic ability of ovarian cancer cells in nude mice and reduced the expression of p27. These findings suggested that Lewis y antigen activated both the autophagy and ubiquitin-proteasome activity and promoted the degradation of p27 through the ubiquitin-proteasome pathway.

Keywords: degradation; antigen; proteasome activity; lewis antigen; ubiquitin proteasome

Journal Title: Oncotarget
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.