LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acoustic Detection of Cavitation Inception

Photo by hautier from unsplash

Cavitation phenomenon can cause deterioration of the hydraulic performance, damage by pitting, material erosion, structure vibration and noise in fluid machinery, turbo-machinery, ship propellers and in many other applications. Therefore,… Click to show full abstract

Cavitation phenomenon can cause deterioration of the hydraulic performance, damage by pitting, material erosion, structure vibration and noise in fluid machinery, turbo-machinery, ship propellers and in many other applications. Therefore, it is important to detect inception of cavitation phenomenon. An experimental study has been carried out in order to investigate the noise radiated by various cavitating sources to determine the validity of noise measurements for detecting the onset of cavitation. Measurements have been made measuring the noise radiated by a number of configurations in a water tunnel at various operating condition to determine the onset of cavitation. The measurements have been conducted over a frequency range of 31.5 Hz to 31.5 kHz in one-third octave bands. The onset of cavitation was measured visually through a Perspex side of the working section of the water tunnel. Moreover, a theoretical estimate of the pressure radiated from the cavitation nuclei at their critical radii and their frequency was presented. Tests indicated that, generally, at the point of visual inception there was a marked rise of the sound pressure level in the high-frequency noise, whilst the low-frequency noise increased as the cavitation developed. This finding was supported by the theoretical estimate of the pulsating frequency of cavitation nuclei. The results illustrated that the visual observations of inception confirm the noise measurements.

Keywords: cavitation; frequency; inception; noise; acoustic detection; onset cavitation

Journal Title: Journal of Applied Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.