LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aerodynamic Study of Two Opposing Moving Trains in a Tunnel Based on Different Nose Contours

Photo from wikipedia

It is well known that the train nose shape has significant influence on the aerodynamic characteristics. This study explores the influence of four kinds of nose shapes (fusiform, flat-broad, bulge-broad,… Click to show full abstract

It is well known that the train nose shape has significant influence on the aerodynamic characteristics. This study explores the influence of four kinds of nose shapes (fusiform, flat-broad, bulge-broad, ellipsoidal) on the aerodynamic performance of two opposing high-speed trains passing by each other through a tunnel at 250 km/h. The method of three dimensional, compressible, unsteady Reynolds-averaged Navier-Stokes equations and RNG k-ε double equation turbulence model was carried out to simulate the whole process of two trains passing by each other inside a tunnel. Then the pressure variations on tunnel wall and train surface are compared with previous full-scale test to validate the numerical method adopted in this paper. The assessment characteristics, such as transient pressure and aerodynamic loading, are analyzed to investigate the influence of nose shape on these assessment parameters. It is revealed that aerodynamic performance of trains which have longitudinal nose profile line B (fusiform, flat-broad shape) is relatively better when passing by each other in a tunnel. The results can be used as a guideline for high-speed train nose shape design.

Keywords: nose shape; shape; aerodynamic study; two opposing; study two

Journal Title: Journal of Applied Fluid Mechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.