We analyze the modular geometry of the variable exponent Lebesgue space Lp(.). We show that Lp(.) possesses a modular uniform convexity property. Part of the novelty is that the property… Click to show full abstract
We analyze the modular geometry of the variable exponent Lebesgue space Lp(.). We show that Lp(.) possesses a modular uniform convexity property. Part of the novelty is that the property holds even in the case supp(x) = ∞ . We present specific applications to fixed point theory. xÆΩ
               
Click one of the above tabs to view related content.