LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Investigation of the Influence of K2[B3O3F4OH] on the Activity of Immobilized Superoxide Dismutase

Photo by chrisliverani from unsplash

It is known that oxidoreductase is responsible for the regulation of oxidative stress in organisms, and pathological changes occur within the cell in the form of accumulation or lack of… Click to show full abstract

It is known that oxidoreductase is responsible for the regulation of oxidative stress in organisms, and pathological changes occur within the cell in the form of accumulation or lack of superoxide and peroxide radicals if the oxidoreductase activity is disturbed. Currently, the development of drugs that target the affected cells while leaving healthy cells unaffected is of great interest. The action of potential drugs is based on the inhibition / activation of oxidoreductase. In this work, we studied the electrochemical parameters of superoxide dismutase as well as the action of the potential drug of boroxine - dipotassium trioxohydroxytetrafluorotriborate (K2[B3O3F4OH]) as a target therapeutic for enzyme activity. Electrochemical tests were carried out in a classical three-electrode system using cyclic voltammetry and chronoamperometry techniques, and the obtained results were presented in the form of the kinetic parameters with the maximum value of the current obtained when the solution was saturated with the substrate (Imax) and the Michaelis-Menten constant (Km). K2[B3O3F4OH] was proven to be a reversible inhibitor, and the obtained Imax without inhibitor value of 0.014 mM and Km = 12.09 mM. The results from the Lineweaver - Burk diagram show that the inhibition is a partial noncompetitive inhibition type.

Keywords: investigation influence; b3o3f4oh; electrochemical investigation; activity; superoxide dismutase

Journal Title: International Journal of Electrochemical Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.