LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-dimensional fast single-point macromolecular proton fraction mapping of the human brain at 0.5 Tesla.

Photo from wikipedia

Fast single-point macromolecular proton fraction (MPF) mapping is a recent magnetic resonance imaging (MRI) method enabling quantitative assessment of myelin content in neural tissues. To date, the reported technical implementations… Click to show full abstract

Fast single-point macromolecular proton fraction (MPF) mapping is a recent magnetic resonance imaging (MRI) method enabling quantitative assessment of myelin content in neural tissues. To date, the reported technical implementations of MPF mapping utilized high-field MRI equipment (1.5 T or higher), while low-field applications might pose challenges due to signal-to-noise ratio (SNR) limitations and short T1 . This study aimed to evaluate the feasibility of MPF mapping of the human brain at 0.5 T. The three-dimensional MPF mapping protocol was implemented according to the single-point synthetic-reference method, which includes three spoiled gradient-echo sequences providing proton density, T1 , and magnetization transfer contrast weightings. Whole-brain MPF maps were obtained from three healthy volunteers with spatial resolution of 1.5×1.5×2 mm3 and the total scan time of 19 minutes. MPF values were measured in a series of white and gray matter structures and compared with literature data for 3 T magnetic field. MPF maps enabled high contrast between white and gray matter with notable insensitivity to paramagnetic effects in iron-rich structures, such as globus pallidus, substantia nigra, and dentate nucleus. MPF values at 0.5 T appeared in close agreement with those at 3 T. This study demonstrates the feasibility of fast MPF mapping with low-field MRI equipment and the independence of brain MPF values of magnetic field. The presented results confirm the utility of MPF as an absolute scale for MRI-based myelin content measurements across a wide range of magnetic field strengths and extend the applicability of fast MPF mapping to inexpensive low-field MRI hardware.

Keywords: mpf mapping; mpf; field; single point; brain

Journal Title: Quantitative imaging in medicine and surgery
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.