LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reproducibility of radiomic features of pulmonary nodules between low-dose CT and conventional-dose CT.

Background The reproducibility of radiomic features is essential to lung cancer detection. This study aimed to investigate the reproducibility of radiomic features of pulmonary nodules between low-dose computed tomography (LDCT)… Click to show full abstract

Background The reproducibility of radiomic features is essential to lung cancer detection. This study aimed to investigate the reproducibility of radiomic features of pulmonary nodules between low-dose computed tomography (LDCT) and conventional-dose computed tomography (CDCT). Methods A total of 105 patients with 119 pulmonary nodules [39 ground-glass nodules (GGNs) and 80 solid nodules] who underwent LDCT and CDCT were retrospectively studied between September 2019 and November 2020. Pulmonary nodules were manually segmented and 1,125 radiomic features (shape, first-order intensity, texture, wavelet, and Laplacian of the Gaussian features) were extracted from both LDCT and CDCT images. The concordance correlation coefficient (CCC) was used to evaluate the reproducibility of these radiomic features. Results Of the 1,125 radiomic features considered, 35.5% (399 of 1,125) and 41.5% (467 of 1,125) were reproducible (CCC ≥0.85) for GGNs and solid nodules, respectively. The intensity, texture, and wavelet features of solid nodules were more reproducible than those of GGNs. The mean CCC values for intensity and texture features of solid nodules were of 0.85 and above, whereas the mean values for those of GGNs were of less than 0.85. After Gaussian kernel (σ =2) preprocessing, the CCC of intensity and texture features of GGNs improved from 0.77 to 0.90, and 84.9% (79 of 93) of the radiomic features were reproducible (mean CCC increase from 0.84±0.13 to 0.92±0.08 for intensity features, and from 0.75±0.15 to 0.89±0.11 for texture features). Wavelet features had the lowest CCCs for both GGNs and solid nodules. Conclusions The majority of the radiomic feature classes of solid pulmonary nodules have a high level of reproducibility between LDCT and CDCT. However, LDCT should not be used as an alternative to CDCT in the radiomic study of GGNs.

Keywords: solid nodules; cdct; pulmonary nodules; reproducibility radiomic; radiomic features

Journal Title: Quantitative imaging in medicine and surgery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.