LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of deep learning-based image reconstruction on image quality and lesion visibility in renal computed tomography at different doses

Photo by usgs from unsplash

Background Numerous computed tomography (CT) image reconstruction algorithms have been developed to improve image quality, and high-quality renal CT images are crucial to clinical diagnosis. This study evaluated the image… Click to show full abstract

Background Numerous computed tomography (CT) image reconstruction algorithms have been developed to improve image quality, and high-quality renal CT images are crucial to clinical diagnosis. This study evaluated the image quality and lesion visibility of deep learning-based image reconstruction (DLIR) compared with adaptive statistical iterative reconstruction-Veo (ASiR-V) in contrast-enhanced renal CT at different reconstruction strengths and doses. Methods From January 2020 to May 2021, we prospectively included 101 patients who underwent renal contrast-enhanced CT scanning (69 at 120 kV; 32 at 80 kV). All image data were reconstructed with ASiR-V (30% and 70%) and DLIR at low, medium, and high reconstruction strengths (DLIR-L, DLIR-M, and DLIR-H, respectively). The CT number, noise, noise reduction rate (NRR), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall image quality, and the proportion of acceptable images were compared. Lesions of DLIR groups were evaluated, and the conspicuity-to-noise ratio (C/N) was calculated. Results Quantitative values (noise, SNR, CNR, and NRR) significantly differed between all reconstructions at 120 and 80 kV (P<0.001) and between each reconstruction, except ASiR-V 70% vs. DLIR-M. At 120 kV, the overall image quality and the proportion of acceptable images significantly differed between all reconstructions (P<0.001) and between each reconstruction, except ASiR-V 30% vs. DLIR-L and ASiR-V 70% vs. DLIR-M. At 80 kV, the overall image quality significantly differed between all reconstructions (P<0.001) and between each reconstruction, except between ASiR-V 30%, ASiR-V 70%, and DLIR-L. Quantitative and qualitative values were highest in DLIR-H, while the values were close in DLIR-H (80 kV) vs. ASiR-V 70% (120 kV) and DLIR-M (80 kV) vs. ASiR-V 30% (120 kV). The lesion conspicuity and noise significantly differed in DLIR at 120 kV and 80 kV (P<0.001). C/N significantly differed in DLIR at 120 kV (P<0.001) but not at 80 kV. DLIR-L and DLIR-M exhibited much-improved lesion display (C/N >1), and DLIR-H exhibited much-improved noise (C/N <1) at 120 kV. Conclusions DLIR significantly improved the image quality and lesion visibility of renal CT compared with ASiR-V, even at a low dose.

Keywords: image quality; dlir; lesion; reconstruction; image

Journal Title: Quantitative Imaging in Medicine and Surgery
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.